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ABSTRACT

The study presents a new integral identity for the velocity
potential of three-dimensional flow about a ship moving with
constant speed in regular waves. This integral identity is
valid outside, inside, and exactly on the surface of the ship,
and is equivalent to the set of three classical identities valid
strictly outside, inside, and on the ship's surface, respectively.
For the usual problem of ship motions in a regular sea, the
integral identity obtained in this study yields an integro-
differential equation for determining the velocity potential on
the ship's surface. A recurrence relation for solving the pro-
posed new integro-differential equation is presented..
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DTNSRDC under Program Element 61152N, Task Area ZR0230101, and using Work Unit

1542-018.
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1. INTRODUCTION

Motions of a ship advancing with constant average speed in regular waves are

predicted theoretically by using approximate theories based on the slenderness of

ship forms. These theories are the strip theory, most useful in the short-wavelength

regime, and the complementary low-frequency slender-body theory; these complementary

slender-ship approximations have recently been united and extended in a unified

slender-ship theory valid for all frequencies. A detailed mathematical presentation

and historical account, including extensive references to the relevant literature,

of these slender-ship theories may be found in Newman.
1

Agreement between strip-theory predictions and experimental measurements has

been found, in a large number of cases, to be sufficient for many practical purposes.

This, and the relative mathematical and computational simplicity of the strip theory,

have made that theory the most widely used method for predicting ship motions.

Indeed, the theory, with the improvements of the recently proposed unified slender-

ship theory, seems likely to continue to provide a very useful and practical tool

in the future, even if significant improvements in computer performance are made and

calculations based on a three-dimensional theory become more practical.

Notwithstanding its many merits, the strip theory evidently has limitation, and

in some cases there is a need for potentially more accurate calculations based on a

fully three-dimensional theory. For instance, three-dimensional calculations would

be useful for predicting the pressure distribution on a complex bow shape, such as

one equipped with a bulb or a sonar dome.

At present, fully three-dimensional calculations represent a difficult task,

and indeed only a very limited number of numerical results have been obtained by
2 3 4-7

only a few authors: Chang, Guevel and Bougis, and Inglis and Price. Further-

more, these sets of numerical results are not entirely consistent: while agree-

ment is good for some hydrodynamic coefficients, discrepancies are very large for

other coefficients. This lack of consistency suggests that the accuracy of three-

dimensional calculations may be difficult to control, as is the case for the problem

of wave resistance.
8

Three-dimensional calculation methods are based either on numerical solution of

an integral equation for the velocity potential or on related assumed distributions

of singularities (sources or/and dipoles) on the ship surface. Different integral

*A complete listing of references is given on page 27.
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equations can thus be formulated, and these can be solved in several ways, in parti-

cular by using an iterative solution procedure or inverting a matrix of influence

coefficients. The performance of a three-dimensional calculation method (measured in

terms of accuracy control, computing times, and complexity of implementation) must

obviously depend, to a large extent, upon the form and mathematical properties of

the integral equation and upon the solution procedure selected as the basis of the

calculation method. It thus may be useful to consider various alternative integral

equations and solution procedures.

The object of this study is to present a new integro-differential equation and

a related recurrence relation for determining the velocity potential. The results

given in this study generalize those obtained previously for the particular problems

of wave radiation and diffraction at zero forward speed, ship wave resistance,1 0

and potential flow about a body in an unbounded fluid.
11

The integro-differential equation, defined by Equations (5.1)-(5.4), is an equa-

tion for the velocity potential $, rather than for the density of a related distri-

bution of sources or dipoles. This equation involves both a waterline integral

(i.e., a line integral around the intersection curve between the mean hull surface
10

and the mean sea plane), as in the problem of ship wave resistance, and a water-

plane integral (i.e., an integral of the Green function over the portion of the mean

sea plane inside the mean hull surface), as in the problem of radiation and diffrac-

tion at zero forward speed.9  The highly singular dipole terms (X)3G(,x)/n and

4(x)aG( ,x)/3x in the hull and waterline integrals, respectively, in the classical

integro-differential equation defined by Equations (4.10c), (4.8), and (4.9), take

the forms [ (x)- (C)]3G(C,x)/3n and [ respectively, in the

modified integro-differential equation obtained in this study. These modified dipole

terms are nonsingular, i.e., remain finite, as the integration point x approaches

any field point t where the hull is smooth (i.e., has a tangent plane).

A recurrence relation is proposed for solving the integro-differential Equation

(5.1) iteratively. This recurrence relation is defined by Equation (5.7), where the

initial (zeroth) approximation is taken as the nonhomogeneous term '(Z) in the

integro-differential Equation (5.1). In the particular case of potential flow about

an ellipsoid (with arbitrary beam-to-length and draft-to-length ratios) in trans-

latory motion, along any direction, in an unbounded fluid, the first approximation,

3



given by Equation (5.6), actually is exact, as is proved in Reference 11; this first

approximation was also shown to provide a good approximation to the exact potential

for arbitrary translatory motions in an unbounded fluid of a cylinder in the shape

of an ogive with arbitrary thickness ratio.

The plan of the study is as follows. The basic potential-flow problem of the

three-dimensional theory of flow about a ship moving with constant speed in regular

waves is briefly formulated in Section 2; a more detailed formulation of the problem

may be found elsewhere, for instance in Reference 1. The basic equations satisfied

by the Green function associated with the free-surface boundary condition (2.5) are

given in Section 3. Specifically, the Green function, G, satisfies Equations (3.3a

and b) or (3.4a and b), depending upon whether the singularity is fully submerged

( <O) or exactly at the mean sea surface (C=O), respectively. Equations (3.3a and b)

for a fully submerged source are well known. However, Equations (3.4a and b), cor-

responding to a flux across the mean sea surface, are proper in the limiting case

when the singularity is exactly at the mean sea surface. Equations (3.3a and b) and

(3.4a and b) generalize the corresponding equations obtained previously for the par-

ticular cases of ship wave resistance
12 and of wave radiation and diffraction at

zero forward speed.
1 3 Equations (3.3a and b) and (3.4a and b) are used in Section 4

for obtaining basic integral identities satisfied by the velocity potential. The

three classical identities (4.10a, b, and c)--valid strictly outside, inside, and on

the ship surface, respectively--are obtained first. However, the main new result of

Section 4 is identity (4.13). This identity is valid outside, inside, and exactly on

the hull surface, and indeed is equivalent to the set of the three usual identities

(4.10a, b, and c). The integral identity (4.13) yields an integro-differential

equation for determining the velocity potential on the surface of a ship moving at

constant speed in regular waves. This equation is examined in Section 5. Finally,

an approach to the numerical evaluation of the iterative approximations defined in

Section 5 is presented in Section 6.
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2. THE BASIC POTENTIAL-FLOW PROBLEM

The basic potential-flow problem of the linearized theory of ship motions in a

regular sea is briefly formulated in this section. The sea is assumed to be of

infinite depth and horizontal extent. Water is regarded as homogeneous and incom-

pressible, with density p. Viscosity effects are ignored, and irrotational flow is

assumed. Surface tension, wavebreaking, spray formation at the ship bow, and non-

linearities in the sea-surface boundary condition are neglected. A moving system of

coordinates (X,Y,Z) in steady translation with the mean forward velocity U of the

ship is defined. Specifically, the mean (undisturbed) sea surface and the center-

plane of the ship in its mean position are taken as the planes Z = 0 and Y = 0,

respectively; the Z axis is directed vertically upwards, and the X axis is directed

toward the ship bow.

In the above-defined translating system of coordinates, the linearized sea-

surface boundary condition takes the form

[gz+(Ux-T)2] (UX T )P'/p - gQ' on Z = 0 (2.1)

where g is the acceleration of gravity, T is the time, V/ =_ (X,T) is the velocity

potential, P' E P'(X,Y,T) and Q' E Q'(X,Y,T) correspond to distributions of pressure

and flux, respectively, at the sea surface (we have Q' E 0 for all practical applica-

tions, and P' = 0 except for surface-effect ships), and the notation 3ZI XI a T is

meant for the differential operators 3/ Z, 3/3X, D/3T, respectively.

The present study is concerned with flows simple-harmonic in time, with radiant

f::-.quency w where w is the frequency of encounter. However, such free-surface flows

are not completely (or uniquely) determined unless an appropriate "radiation condi-14
tion" is imposed, as is well known and is discussed by Stoker, for instance. A

convenient alternative approach, employed previously in Lighthill15 and

Noblesse,12 ,1 3 to the use of such a "radiation condition" consists in defining a

time-harmonic flow as the limit, as the small positive auxiliary parameter a

vanishes, of a flow defined by a velocity potential of the form

D(X,T) = Re1D(X)exp[(G-i)T] (2.2)

5



where Re represents the real part of the function on the right side. The eventual

sea-surface distribution of pressure P'(X,Y,T) and flux Q'(X,Y,T) similarly are

assumed to be of the form

P'(X,Y,T) = Re P(X,Y)exp[(G-iw)TI (2.2a)

Q'(X,*Y,T) = Re Q(X,Y)exp[(o-iw)T] (2.2b)

In this alternative approach, one is then faced with an initial-value problem, with

the obvious initial conditions (D = 0 and 3iV/;T = 0 for T = --. Use of Equations

(2.2) and (2.2a and b) in Equation (2.1) then yields the sea-surface boundary

condition

[g9Z - iU- +i a)2  = i(w-iU x+iu)P/p - gQ on Z = 0 (2.3)

for the "spatial component" 4(X) of the actual potential 4V(X,T).

Nondimensional variables are defined in terms of 1/w as reference time, the

ship length L as reference length, and the acceleration of gravity g as reference
1/2 1/2

acceleration, from which the reference velocity (gL) , potential (gL) L, and

pressure pgL can be formed. The nondimensional variables

t , = = X/L, = /(gL) / L, p = P/pgL, q = Q/(gL)1/2  (2.4)

are then defined. In terms of these nondimensional variables, the sea-surface

boundary condition (2.3) can be shown to take the form

[az-(f-iFD +i) 2] = i(f-iFa +iE)p - q on z = 0 (2.5)

where f is the frequency parameter, F is the Froude number, and C is the time-

growth parameter defined as

S



f - W(L/g) 1/2  (2.6a)

F - U/(gL)l/2 (2.6b)

c = a(L/g) I/2  (2.6c)

The basic potential-flow problem of the linearized theory of ship motions in a

regular sea may now be stated. As is well known, the problem consists in solving

the Laplace equation

V2 = 0 in d (2.7)

subject to the boundary conditions specified below. The solution domain d in Equa-

tion (2.7) is the domain exterior to the ship hull and bounded upwards by the mean

sea surface a. On the mean sea surface a, the boundary condition (2.5) must be

satisfied:

[Dzp (f - iF px+ iC )2 ] = i(f-iFDx+ic)p - q on a (2.8)

where we generally have p = 0 = q. The potential (x) vanishes as I lxi - - at least

as fast as 1/i XII; that is, we have

= 0(1/llxil) as (2.9)

Finally, on the mean position of the ship hull surface h the potential must satisfy

the usual Neumann condition

a4/an given on h (2.10)

where W/n H Vln is the derivative of c in the direction of the unit normal vector

n to h, taken to be pointing inside the fluid. The precise form taken by the

7



expression for 3/3n on h in the usual "radiation" and "diffraction" problems may be
1

found in Newman, for instance.

A classical technique for solving a potential-flow problem such as that defined

by Equations (2.7) through (2.10), in the general case of an arbitrary ship form,

consists in formulating an integral equation for the potential based on the use of

a Green function satisfying all the equations of the problem except the "hull boun-

dary condition," which is to be satisfied by means of the integral equation. The

required Green function is defined in the following section.

8



3. THE GREEN FUNCTION
The Green function, G(F,x), associated with the sea-surface boundary condition

(2.5) satisfies the equations

V G = 6( -x)6(n-y)6( -z) in C < 0 (3.1a)

[D (f-iFE+ig)2 ]G = 0 on C = 0 (3.1b)

where 6( ) is the usual Dirac "delta function," and V represents the differential

operator (3,d ,). Physically, the Green function G(E,x) is the "spatial compo-

nent" of the velocity potential ReG(C,x)exp[(e/f-i)t] of the flow created at the

field point C( ,rl,r<0) by a moving source of pulsating strength Re exp[( /f-i)t]

located at point x(x,y,z<0). In the limiting case, z = 0, the source at point x
evidently is no longer fully submerged, so that this physical interpretation of the

Green function becomes ambiguous. A complementary physical interpretation for this

limiting case is that the pulsating flow created at point x(x,y,z=O) stems from a

flux across the plane z = 0 of the mean sea surface. In the limit z = 0, the Green

function G(Z,x) must then satisfy the equations

V2G = 0 in < 0 (3.2a)

2

[ -f-iF; +ig) IG = -6( -x)6(n-y) on C = 0 (3.2b)

as may be seen from the sea-surface boundary condition (2.5). Equations (3.2a and

b), justified above on physical grounds, can be justified mathematically in the man-

ner shown in Noblesse 1 2 ,1 3 for the particular problems of wave radiation and diffrac-

tion at zero mean forward speed (F=O) and of steady flow about a ship advancing at

constant speed in calm water (f=O).

The Green function G(ZX) actually is a function of the four variables -x,

n-y, r+z, and (C-z) 2 , and thus is invariant under the substitutions - - x,

n - - y, +-+ z. By performing these changes of variables in Equations (3.1a and b)

9



and (3.2a and b), it then may be seen that the Green function G(t,x) also satisfies

the following equations

2V G = 6(x-C)6(y-n)5(z- ) in z < 0 (3.3a)

for < 0

[$z-(f+iF x+ic) 2 ]G = 0 on z = 0 (3.3b)

V2G = 0 in z < 0 (3.4a)

for C = 0

[ z-(f+iF3 +i) 2]G = -6(x-)6(y-n) on z = 0 (3.4b)

where V is the differential operator (x,3 yaz ). Equations (3.3a and b) and (3.4a

and b) will be used in the next section for obtaining integral identities satisfied

by the velocity potential.

A wel. known expression for the Green function, in terms of a double integral,

can be obtained by using a double Fourier transformation of Equations (3.1a and b)

with respect to the horizontal coordinates and n. This Fourier representation of

the Green function is given by

4iG(E,x) = -[(x-) +(y-n) +(Z 2-I /2 + [(x-) 2+(y-n) 2+(z+)2] I /2

_! f exz+)i+v1/
1 J dv f x[z ( V2) 12+i{(x-Q)P+(y-n)vI] (3.5)

11 J (P 
2 +2) 1/2 _ (f-Fp+ic)2

The "Cartesian Fourier integral representation" (3.5) can also be expressed in

the form of a "polar Fourier representation" by performing the change of variables

= X cosO and v = X sinO, which express the Cartesian Fourier variable p and v in

terms of the polar variables X and 0. These equivalent double-integral representa-

tions were first obtained by Haskind
16 and Brard,17and later by Hanaoka,

18

Stretenski,1 9 Eggers, 20 Havelock,21 and Wehausen,22 and are therefore well known.

10



More recently, one-fold integral representations (involving the exponential
23

integral in the integrand) have been obtained and used by Inglis and Price and

Guevel and Bougis. 3 These single-integral representations are modifications of

the double-integral Fourier representation in terms of the polar coordinates (A,e).

Single-integral representations associated with the Cartesian Fourier representation

(3.5), in the manner shown in Reference 12 for the particular problem of ship wave

resistance (f=O, FO0), have not been obtained to the author's knowledge. However,

such single-integral representations are considerably more complex than the corre-

sponding integral representations for the ship wave resistance problem and the series

representations obtained in Reference 13 for the particular case of wave radiation

and diffraction at zero forward speed (F=O, fO). For the practical purpose of

numerically evaluating the velocity potential defined by a surface (or line) distri-

bution of singularities (sources or dipoles) with known strength, it may actually be

preferable to use a double-integral Fourier representation, such as that given by

Equation (3.5), together with an interchange in the order of integration between the

Fourier variables (p,v) and the space variables (x,y,z), as is shown in Section 6.

11



4. FUNDAMENTAL INTEGRAL IDENTITIES

in this section, basic integral identities for the velocity potential are

obtained by applying a classical Green identity to the potential z ( $x) and the

previously defined Green function G H G( ,x). The Green identity is

f ( V2G-GV2 )dv ($G/3z-G3$/3z)dxdy

d' a

+ f (G9$/3n-0g/3n)da + f ($DG/Dn-GD$/ n)da (4.1)

h h,

where d' is the finite domain bounded by the ship hull surface h, the mean sea plane

z = 0, and some arbitrary, but sufficiently large, exterior surface h. surrounding

the ship surface h, as is shown in Figure 1; furthermore, a' is the portion of the

plane z = 0 between the intersection curves c and c. of the plane z = 0 with the

ship surface h and the exterior surface h , respectively. On the surfaces h and h

we have D/3n E V -n and DG/3n E VG-n where n is the unit outward normal vector to

h or h.0, as is shown in Figure 1. Finally, dv and da represent the differential

elements of volume and area at the integration point x of the domain d' and the sur-

faces h or h., respectively, and dxdy is the differential element of area of the

mean sea surface a'.

Let the integrand 4aG/ z - GD$/9z of the sea-surface integral in Equation (4.1)

be expressed in the form $[ z-(f+iF 3 +i) 2 ]G - G[ z-(f-iF3 +iC) ]P +

2iF(f+ic)3(G )/ x + F 2(Ga$/x-p3G/x)/Dx. Furthermore, we may use the relation

12



CC

[2(+iJ 2(G /ax+Fa(G/ax-a/x)Jddy(42

where the curves c and c., are oriented clockwise and counterclockwise, respectively,

as is shown in Figure 1. The Green identity (4.1) can then be expressed in the form

13



f 4V
2 Gdv - f 4[ -(f+iF3 x+ic )2 ]Gdxdy

d a

= f GV 2dv - f G[9z-(f-iF +iC) 2 ]dxdy

d a

+ f (Ga3/n- aG/ n)da

h

+ F [2i(f+iC)Gp+F(G3/x-pG/3x)]dy + (4.3)

C

where the term I. is given by the integrals

10 f ( Gn-Ga/n)da + [2i(f+i)G +F(G /Dx- G/3x)]dy
Jh c

We have C = 0(I/r) and p 0(l/r) as r E ( 2 + 2  21/2 , so that the term

vanishes as the large surrounding surface h. is made ever larger. The term I can

then be ignored if the finite domain d' and the finite region a' of the mean sea

plane are replaced by the unbounded mean flow domain d and the unbounded mean sea

surfnr r nutside the mean hull surface h and its intersection curve c with the plane

z = 0, respectively.

By expressing the potential 1 in the integrands of the two integrals on the left

side of Equation (4.3) in the form 4 = + - where 4 E t(x) as was defined
+

previously, and 4, represents the potential at the field point C, i.e., , )

we may obtain

f V2Gdv - f c[Dz-(f+iF3 +ic) 2 ]Gdxdy = C , + C' (4.4)

d a

14



where C and C' are defined as

C = f V2 Gdv - f [Dz-(f+iF x +ie) 2 ]Gd xdy

d o

C= (4-4*)V2 Gdv -f ( 4- )[1az-(f+iF3 x +i E ) 2 ]Gdxdy (4.5)

d a

It may be seen from Equations (3.3) and (3.4) that we have C' = 0 if 4 - 4, 4)(x)

- 4(Z) - 0 as x , that is if the potential is continuous everywhere in the solu-

tion domain d and on its boundary a + h + c, as is assumed here. Use of Equation

(4.4), with C = 0, in Equation (4.3) then yields

C4, =f GV2 )dv - J G[-(f-iFx+i)2 ]dxdy

d a

+ f (G/an-G/3n)da

h

+ F f [2i(f+ic)G+F(G3/3x-43G/3x)]dy (4.6)

c

Let t(t x,t y,O) represent the unit vector tangent to the curve c oriented in the

clockwise direction, as is shown in Figure 1. On the mean waterline c, we have

dy = t dt, where dk is the differential element of arc length of c. Furthermore, we

have aO/ax - VO'i, where 1 (1,0,0) is the unit positive vector along the x axis. This

then yields 34)/Dx = WO[ n+t4/Di+(nxt)4/ad]'i = n x /3n + t x4/3 - n t y/3d,x + y

where (nx,n ,n) are the components of the unit outward normal vector n to the hull
y -

surface h, 0/3k is the derivative of 4 in the direction of the tangent vector t to

c, and 30/3d is the derivative of 4 in the direction of the unit vector n x t, which

is tangent to h and pointing downwards.

15



Equation (4.6) can then be expressed in the form

C4)(Z) = 4(f) - t( ; ) (4.7)

where C is given by Equation (4.5), P(Z) is the potential defined as

= f GV24dv- f G['z-(f-iF'x+i) 2])dxdy

d

+ f G4 4/nda + F2 f Gnxty ,/DndZ (4.8)

h c

and L(F;) is the linear transform of 4) defined as

L(t;d)= f 4)G/3nda - 2i(f+ic)F f Gtyd9,

h c

+ F2f [4)G/Dx-G(tx4/3-nzty3/d)]tydZ (4.9)

C

Use of Equations (3.3a and b) and (3.4a and b) in expression (4.5) for C then shows

that we have C - 1 if the field point is strictly outside the hull surface h, in d

or on a, whereas we have C - 0 if t is strictly inside the ship su.face h. It can

also be seen from Equations (3.3) and (3.4) that we have C = 1/2 if the point is

exactly on the hull surface h or on its intersection c with the plane z = 0, at

least for points t where the hull h + c is smooth; more generally, the value of

47C (or 27C) at a point 4 of h (or c) is equal to the angle at which d (or a) is

viewed from the point t. We thus have
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in d + o - h - c (4 .10a)

0 = () - L( ;¢) for in di + ai - h - c (4.10b)

( ) /2 exactly on h + c (4.10c)

where di and ai represent the domain and the portion of the plane z = 0, respec-

tively, strictly inside the ship surface h, as is shown in Figure 1.

The value of the constant C on the left side of Equation (4.7) is discontinuous

across the ship hull surface h; C being equal to I outside h and to 0 inside, as is

explicitly indicated in Equations (4.10a, b, and c). This discontinuity in the value

of C evidently is accompanied by a corresponding discontinuity on the right side of

Equation (4.7). Specifically, the latter discontinuity stems from the dipole-

distribution integrals fh OG/3nda and f 4 G/ xt ydi in the potential L( ;)
-4.

defined by Equation (4.9). An identity valid for any point c--outside, inside, or

exactly on the ship surface h--can be obtained by eliminating the discontinuity in

the value of C in Equation (4.7). This can be done by adding the term Ci¢, on both

sides of Equation (4.7), with C, given by

C= f V2Gdv f [ z_(f+ira +iE) 2]Gdxdy (4.11)

d i  a i

Use of the divergence theorem

f V2Gdv f aG/3zdxdy + f DG/3nda

di i h
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yields

C.i f (f+iF2x+ic) 2 Gdxdy + f DG/9nda

C. h

Furthermore, by using the relation

[ [2i(f+ic) G/3x-F 2 G/3x mdxdy f [2i(f+ic)G-F3G/jX]tyd9

0. c

we may obtain the following alternative expression for Ci:

Ci = (f+ie)2 f Gdxdy - 2i(f+ic)Ff Gtyd9,

a i c

+ F2f aG/xt di + f G/3nda (4.12)

c h

By adding the term Cij , on the left and right sides of Equation (4.7), with C

given by Equation (4.11) on the left side and Equation (4.12) on the right side, we

may obtain

[1-w()() ) - L(;(4.13)

where w( ) is the "waterplane integral" defined as

W(b) (f+ic) f G(C,x)dxdy (4.14)

Gi
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and L(;1) is the linear transform of $ defined as

L'(t;o) = (0-*)DG/anda - 2i(f+ic)F f G(0-0,)tydt
h c

+ F2 f [(O-O,)aG/ax-G(tx3O/3Z-nzty o/ad)]tydt (4.15)

c

in which we have 0 2 O(x) and 0* :-(: ) as was defined previously. In obtaining

Equation (4.13), the relation C + C. - 1 was used. This relation can be obtained by

using Equations (3.3a and b) and (3.4a and b) in Equations (4.5) and (4.11), which

yield

C + C. = f V2Gdv - f [az - (f+iFa +iE)
2 ] Gdx d y

z<O z=O

Identity (4.13) is valid for any point t, whether outside, inside, or exactly on the

ship surface h. This identity thus is essentially equivalent to the set of the three

classical identities (4.10a, b, and c), which are exclusively valid for outside,

inside, and on the hull surface h, respectively.

Identities (4.10a, b, and c) and (4.13) correspond to the case of an open hull

surface piercing the sea surface. For a closed, fully submerged surface h, the

waterplane integral w(E) defined by Equation (4.14) and the integrals around the

mean waterline c in Equation (4.8) for the potential P(E) and in Equations (4.9)

and (4.15) for the potentials L(&;O) and L(t;) are evidently not present. Two

other important particular cases of identities (4.10a, b, and c) and (4.13) are

obtained in the limiting cases when the Froude number F vanishes, corresponding to
9

wave radiation and diffraction by a body with zero mean forward speed, and when

the frequency parameter f vanishes, corresponding to steady flow about a ship
10

advancing in calm water.
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5. INTEGRAL EQUATION AND RELATED ITERATIVE APPROXIMATIONS

Identities (4 .10a, b, and c) and (4.13) hold for any function continuous in

the domain d and on its boundary a + h + c. If the function $ is taken as the veloc-

ity potential of flow about a ship advancing at constant mean speed in a regular sea,

then the normal derivative 3/an of 1 is given on the hull surface h, and 4 satisfies

the Laplace Equation (2.7) in the mean flow domain d and the sea-surface boundary

condition (2.8), with p = 0 = q, at the mean sea surface a. Identities (4.10c) and

(4.13) then yield integro-differential equations for determining the potential on

the ship surface. Specifically, Equation (4.13) becomes

[l-w(Z)]H(Z) -- iPC) - L& ;l) (5.1)

where the waterplane integral w(E) is given by

w() = (f+ic) f G(E,x)dxdy (5.2)

the potential i( ) takes the form

= Ga4/Tnda + F 2 f Gnxty $/and (5.3)

h c

and the potential L'(E; ) is given by

Lf( ;) = J ($-$,)aG/anda - 2i(f+ic)F f G(,-4t)tydt

h c

+ F2 r[(,-$4)3G/ x-G(tx $/a9-nzty /ad)]tydi (5.4)

c
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The potential p() is known since 4/an is given on the ship surface h. The poten-

tial L'(;), on the other hand, is evidently not known.

An approximate solution of the integro-differential Equation (5.1) may be

obtained by seeking a solution of Equation (5.1) of the form @( ) = k(t)i(t), where

the function k(Z) W v(')/p(Z) is assumed to be slowly varying. Specifically, by

adding the term k(C)L'(E; ) to both sides of Equation (5.1) and multiplying the

resulting equation by i(U), we may obtain

= 2(') + ¢(Z)L(;) - L( ;4) (5.5)

If the potential were actually proportional to the potential i, the term

; - )L'(; ) would vanish, and the modified integro-differential Equa-

tion (5.5) would yield the solution

+ (5.6)

More generally, the above expression for the potential can be regarded as the

first approximation in the sequence of iterative approximations (n) associated

with the recurrence relation

0 (b = W + L(Z;n for n 0 (5.7)

and the initial (zeroth) approximation (0)) =(). An approach to the numerical

evaluation of these iterative approximations is presented in the following section.
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6. NUMERICAL EVALUATION OF ITERATIVE APPROXIMATIONS

Equation (3.5) for the Green function may be written in the form

x1G(,) = -(l/r-1/r') - (1/n) f dv { d1JE(p,V;t)E(P,V;x)/D(i,v) (6.1)

where r, r', E(ip,v;x), E(P,v;t), and D(p,v) are defined as

r (-)2 +(-2 +(-)2 ]1/2 (6.1a)

r' [(x- ) 2 +(-)2+z0211/2 (6.1b)

E(ji,v;x) = exp[z(V12+V ) 1/2 +y) (6.1c)

EWVQ= expL[ 2 +V2 1/2 11TV) 6.d

D(p,,v) = (11 2 \)2 )1/2_ f-~~c

The potential t()defined by Equation (5.3) can then be expressed in the

form

= S('Q + R( (6.2)

where the potentials tp and ipR correspond to the singular terms 1/r - l/r' and the

regular term defined by the double integral, respectively, in Equation (6.1) for

the Green function. Specifically, the potential ip is given by the hull-surface

integral
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iS(f) =-(1/4r) f (i/r-/r')a$/3nda (6.2a)

h

and the potential iR may be expressed in the form

R (lf400 dv f 0dpE~p,V;Z)A(P,V)/D(1,v) (6.2b)
-o -o

where A(p,v) is defined as

A(Vi,v) f E(p,v;x) /3nda + F2 f E(p,v;X)nxt yq /andk (6.2c)

h c

The waterplane integral w(C) defined by Equation (5.2) takes the form

w( ) = - (f+iE) 2  dv f d1JE(BV; ) r
4m2  D(, ) exp[i (xi+yv))Idxdy (6.3)

-w -o oi

The potential L(;P) defined by Equation (5.4) can then be expressed in the

form

L ; =LS( ;) + (6.4)

where the potentials L' and L are defined as
S R
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- S+ R S+ R

-(/4) [(4 )-(4,*+,)](/r-/r)/3nda (6.4a)

h

-~R~E2
SE--(/4-r nz df dSE(Rv;C)A(,v)/D(dv) (6.4b)

- 00 - 00

with A'(p,u) given by

S R S R

h

21(f+ic)F f (4, -4*)ECp,v;x)t yd 9
cy

+ F I {(CR_4, -)E/3x- [t ap / i-n t aW+, + )/;d]E}t d (6.4c)

c

The first iterative approximation (1) can then be determined by using Equa-

tions (6.2), (6.3), and (6.4) in Equation (5.6). The potential L-(', (n)), n >,

defined by Equation (5.7), for the second and subsequent iterative approximations
(n+l)(n~l), can be expressed in a form almost identical to that given above by

Equations (6.4) and (6.4a, b, and c) for the potential L'(;).

The basic computational task common to Equations (6.2b and c), (6.3), and

(6.4b and c) consists in evaluating a double Fourier integral, I() say, of

the form

00 CO

1(b = f dv f dljexp[ C(p2+v2)i/ 2 -i(p+lv)]N(p,V)/D(,V) (6.5)
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where D(,,v) is given by Equation (6.1e), and N(p,v) is defined by a surface or a

line integral of the type

N(ji,v) = f explz( 2+V 2)I/2+i(xp+y)]A(x)da,dxdy,dt (6.5a)

h, c

If a small positive number is used for the parameter c, the function D(V,v) has no

real root, and the integral (6.5) can be evaluated without difficulty in principle.
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